Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

Introduction

- An interface is a device and/or set of rules to match the output of one device to send info to the input of another device
 - physical connection
 - the hardware
 - rules and procedures
 - the software
- Interfacing is the process of connecting devices together so that they can exchange info
- The process of reading input signals and sending output signals is called I/O
- I/O conventions
 - I/O direction is relative to the MCU
 - Input is data read by the MCU
 - Output is data sent out by the MCU
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

Input/Output Subsystems and Registers

- Microcontrollers and programmable I/O chips handle I/O processing using registers
- Each interface is regarded as a subsystem
- Each subsystem has registers as:
 - control
 - status
 - data
- 68HC11 registers
 - the subsystems use different names for registers
 - some registers contain bits used by different subsystems
- I/O ports
 - Each subsystem has chip pins or external lines for I/O data bits
 - each section of lines is called an I/O port
Input/Output Subsystems and Registers

Polled I/O, no interrupt CPU must check a status bit to determine whether an I/O request occurred

Interrupt -- driven I/O I/O request causes interrupt and CPU responds to interrupt
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

Memory or Input/Output Mapping

- **Memory-mapped I/O**
 - each I/O register has an address just like a memory location
 - Ex. 68HC11, Intel 8051, ARM

```assembly
LDAA $1003 ; read turn lever status ; from port C
ANDA #%00000001 ; left turn?
BEQ NO_LEFT ; if no, go to no_left

LDAA $1004 ; get old output data ; from port B
ANDA #%01111111 ; turn off right ; signal indicator
ORAA #%01000000 ; turn on left ; signal indicator
STAA $1004 ; this sends out the ; new data to port B
```
Memory or Input/Output Mapping

- **Input/Output mapping technique**
- Have separate memory and I/O instructions
- Ex. Intel, Zilog models
- Ex. Turn indicator application using 8086

```
IN AL,03H ;read turn lever status
AND AL,00000001B ;left turn?
JE NO_LEFT ;if no go to no_left
IN AL,04H ;get old output status
AND AL,01111111B ;turn off right
         ;signal indicator
OR AL,01000000B ;turn on left
         ;signal indicator
OUT 04H,AL ;this sends out
         ;the new data
```

Memory or Input/Output Mapping

* Demonstrate automobile turn signal control using
* bit manipulation instructions
* Note: Listing doesn't show all necessary pseudo-ops
* Some useful equates
BIT0 EQU $01 ;bit 0
BIT6 EQU $40 ;bit 6
REGBAS EQU $1000 ;start address of register block
PORTC EQU $03 ;port C offset
PORTB EQU $04 ;port B offset
LDX #REGBAS ;point to register block
* ;if left turn signaled
BRCLR PORTC,X BIT0 NO_LEFT
* ;then turn on left signal indicator
BSET PORTB,X BIT6
* ; temporary label for assembly purposes
NO_LEFT
Memory or Input/Output Mapping

```c
#include <hc11.h>

/* Declarations */
unsigned char In, Out;
void main(void)
{
    PORTB = Out;
    In = PORTE;
}
```

- There are C compilers for most types of microprocessors
- Microprocessor-specific features such as their registers are not part of the C language standard
- A C compiler for a specific µprocessor or µcontroller typically include definitions to handle certain proc features

Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards
Interfacing Using Polling or Interrupts

- Polled I/O
- Interrupt-driven I/O

Polled I/O

- Configuration
 - refers to the initial settings for a subsystem
 - each subsystem has its own control register
 - a bit in the control register selects polled I/O mode

- Description
 - the MCU checks periodically whether a peripheral requests servicing => polling
 - when there is a request the MCU performs the data transfer operation
 - read or write
Polled I/O

- **Request**
 - an external peripheral may request service by pulsing an I/O request line
 - a L-H or H-L transition causes a flag bit in the status register to be set (or reset)

- **Polling**
 - the MCU reads (polls) the status register periodically to check the status flags

- **Servicing**: through an I/O routine
 - input: peripheral sends data to the I/O port => data register
 - output: the MCU will write data to the data register => I/O port

Interrupt-Driven I/O

- **Control Register**
 - Interrupt I/O mode bit set

- **Status Register**
 - Request flag set
 - Asserts and interrupt

- **Peripheral device**

- **Program**
 - Interrupt request

- **Interrupt Service Routine (ISR)**
 - MCU stacks CPU registers
 - MCU sets mask interrupt bit
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

The Parallel I/O Subsystem

- Each line carries a bit of data word
- The ports can be configured as inputs or outputs
- Applications
 - programmable controllers
 - specialized industrial computers designed for a manufacturing plant environment
 - security systems
 - keyboards; printers
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

Serial Systems

- Synchronous serial I/O subsystems
- Asynchronous serial I/O subsystems
Synchronous Serial I/O Subsystem

- Synchronous serial systems are typically used when all devices are local
- Full-duplex systems
 - data is received and transmitted at the same time
- Half-duplex
 - a data line can either transmit or receive at any one time
- Simplex
 - the data line is used only for transmitting or receiving
- Applications
 - display driving chips; data converter chips; real time clock chips; control bus
Asynchronous Serial I/O Subsystem

- The use of start and stop bits is referred as framing the data
- The rate of bit transfer => baud rate
- Applications
 - computer communications to peripherals such as modems, mice, instruments, printers, or to other computers
- One of the most common asynchronous standards is RS-232 interface
 - software development boards use RS-232
Programmable Timer I/O Subsystem

By using a timer the CPU does not have to execute software time-delay loops to keep track of time

Applications:
* automotive
* speed control of a dc motor
* reference timing signals etc.

Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards
Analog/Digital I/O Subsystem

The smallest binary number represents the minimum analog value.
The largest binary number represents the maximum analog value.

68HC11 has 8 built-in A/D channels, but no built-in D/A.
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

The I/O Subsystem Registers

- Control register and system configuration
- Status registers
- Data registers
Control Registers and System Configuration

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>IE</th>
<th>LE</th>
<th>ED</th>
<th>DIR</th>
<th>TM</th>
</tr>
</thead>
</table>

IE = Interrupt Enable
- enabled or disabled
LE = I/O Request Level
- active high or low
ED = I/O Request edge sensitive
- edge or level sensitive
DIR = I/O Data Direction
- output or input
TM = Transfer Mode
- depends on subsystem

Default values are what the registers contain after reset.
The control register must be configured if the default values are not the desired ones.

Example
IE = 1; LE = 1; ED = 0;
DIR = 1; TM = x;
LDAA #$D0
STAA CONTROL_REG
Status Registers

- Many status registers are called flag bits
- Software performs two basic operations with status bits
 - reads the status bits
 - clears the status bits

FL = I/O Request Flag
- yes/no request occurred

ER = Error Flag
- yes/no error occurred

Data Registers

- Data register hold the input data that has been received or the output data that was most recently sent out
- Subsystems may have several data registers
 - result; capture; compare; port registers

Example:
- Output to register B:
 - $B_{7:0} = 00011000$
 - LDAA #18
 - STAA DATA_REG
Interfacing Concepts

A. Introduction
B. Input/Output Subsystems and Registers
C. Memory or Input/Output Mapping
D. Interfacing Using Polling or Interrupts
E. The Parallel I/O Subsystem
F. Serial Systems
G. Analog/Digital I/O Subsystems
H. The I/O Subsystem Registers
I. Interface Standards

Interface Standards

- Technical associations have become standards organizations
 - The Institute of Electrical and Electronics Engineering (IEEE)
 - The American National Standards Institute (ANSI)
 - The International Standards Organization (ISO)